سیستم سبد‌گردان خودکار با استفاده از ترکیب مدل‌های پیش‌بینی تلاطم و مبانی تحلیل تکنیکال

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد دانشگاه خواجه نصیر طوسی تهران

2 کارشناسی ارشد دانشگاه خواجه نصیرالدین طوسی تهران

3 عضو هیئت‌علمی دانشگاه صنعتی خواجه‌نصیرالدین طوسی

چکیده

یکی از مواردی که درزمینه‌ی خریدوفروش سهام کمتر موردتوجه قرار گرفته‌شده، ارائه مدلی خودکار جهت تشکیل سبد سرمایه‌گذاری بوده که در طول زمان به‌صورت پویا عمل کرده و برحسب شرایط بازار اقدام به تصمیم‌گیری نماید. ازجمله معایب مطرح‌شده در به‌کارگیری تحلیل تکنیکال به‌عنوان یک روش تصمیم‌گیری جهت سرمایه‌گذاری در بازار سهام، عدم توجه به ریسک سرمایه‌گذاری و موضوع تشکیل سبد سهام می‌باشد. لذا مطالعه حاضر با تشخیص نقاط حداکثر و حداقل قیمتی به کمک اندیکاتورهای تکنیکال و همچنین مدل‌سازی ریسک به کمک روش‌های پیش‌بینی تلاطم با استفاده از مدل‌های شرطی GARCH و FIGARCH، به دنبال طراحی یک سیستم سبدگردان خودکار می‌باشد. به‌منظور ارزیابی سیستم طراحی‌شده، عملکرد این مدل در بازه زمانی یک‌ساله موردبررسی قرارگرفته شده است. نتایج به‌دست‌آمده نشان می‌دهد که مدل‌های طراحی‌شده با استفاده از FIGARCH بیش‌ترین بازدهی و کمترین ریسک را دارا می‌باشد. همچنین مقایسه مقادیر نسبت بازده به ریسک، حاکی از برتری سیستم طراحی‌شده پیشنهادی نسبت به سایر استراتژ‌ی‌های مدیریت سبد سهام نظیر مدل مارکویتز و استراتژی خرید و نگهداری دارایی‌ها می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Automatic Portfolio Rebalancing System Design Using Volatility Prediction Models and Technical Analysis Combination

نویسندگان [English]

  • Seyed hojat vakili 1
  • Seyed morteza Emadi 2
  • Seyed Babak Ebrahimi 3
1 MSc. Student in Financial Engineering, Faculty of Industrial engineering, k. N. Toosi University of technology, Tehran, Iran
2 MSc. Student in Financial Engineering, Faculty of Industrial engineering, k. N. Toosi University of technology, Tehran, Iran
3 Assistant Prof., Faculty of Industrial engineering, k. N. University of technology, Tehran, Iran
چکیده [English]

The management of financial portfolios or funds constitutes a widely known problematic in financial markets which normally requires a rigorous analysis in order to select the most profitable assets. In this field designing profitable automated trading systems, which could trade dynamically and make appropriate decisions is significantly important.
Technical analysis is a popular method to predict future price movement. One of the deficiencies of technical analysis is lack of attention to risk of investing and portfolio management. This study has developed automated portfolio management systems using technical analysis indicators to find uptrend price movements and hired GARCH and FIGHARCH models to consider the risk in the decisions. The developed model has assayed in one year time scope. The results illustrate that using FIGARCH models has made superior return to risk ratio. Also the ratio shows that the developed models is significantly better, comparing the other investing methods such as Markowitz model and buy and hold strategy.

کلیدواژه‌ها [English]

  • Automated Portfolio Management
  • Technical analysis
  • FIGARCH
  • Moving average

 

-      محمدی، شاپور (1383)  "تحلیل تکنیکال در بورس اوراق بهادار تهران" فصلنامه­ی تحقیقات مالی، سال ششم، شماره 17.

-      مهدی پور، علیرضا، (1395) "ارائه استراتژی معاملاتی نوین با استفاده از الگوهای نمودار شمعی در معاملات قرارداد آتی نفت شیرین" پایان نامه کارشناسی ارشد، دانشگاه آزاد واحد تهران مرکز.

-      Alexander, S.S. (1961) Price movements in speculative markets: Trends or random walks. Industrial Management Review (pre-1986), 2(2), p.7.

-      Alexander, S.S. (1964) Price Movements in Speculative Markets: Trends or Random walks, Number 2. IMR; Industrial Management Review (pre-1986),5(2), p.25.

-      Arevalo, R., Garcia, J., Guijarro, F., Peris, A., (2017), A dynamic trading rule based on filtered flag pattern recognition for stock market price forecasting. Journal of Expert system with Applications, 81, 177-192.

-      Baillie, R., Bollerslev, T., & Mikkelsen, H. (1996). Fractionally integrated generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 74, 3–30.

-      Bohan, J. (1981) Relative strength: further positive evidence. The Journal of Portfolio Management, 8(1), pp.36-39.

-      Bollerslev, T. (1986). Generalised autoregressive conditional heteroscedasticity. Journal of Econometrics, 31, 307–327.

-      Brock, W., Lakonishok, J. and LeBaron, B. (1991) Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance,47(5), pp.1731-1764.

-      Chen, C.H., Su, X.Q. and Lin, J.B., 2016. The role of information uncertainty in moving-average technical analysis: A study of individual stock-option issuance in Taiwan. Finance Research Letters, 18, pp.263-272.

-      Geweke, J., S. Porter-Hudak (1983). The Estimation and Application of Long Memory Time Series Models. Journal of Time Series Analysis, 221-238.

-      Gorgulho, A., Neves, R. and Horta, N. (2011) Applying a GA kernel on optimizing technical analysis rules for stock picking and portfolio composition. Expert Systems with Applications, 38(11), pp.14072-14085.

-      Jensen, M.C. and Benington, G.A. (1970) Random walks and technical theories: Some additional evidence. The Journal of Finance, 25(2), pp.469-482.

-            Li, B., Hoi, S.C., Sahoo, D. and Liu, Z.Y., 2015. Moving average reversion strategy for on-line portfolio selection. Artificial Intelligence, 222, pp.104-123.

-      Lin, X., Yang, Z. and Song, Y. (2011) Intelligent stock trading system based on improved technical analysis and Echo State Network. Expert Systems with Applications, 38(9), pp.11347-11354.

-      Liu, X., An, H., Wang, L. and Guan, Q., 2017. Quantified moving average strategy of crude oil futures market based on fuzzy logic rules and genetic algorithms. Physica A: Statistical Mechanics and its Applications, 482, pp.444-457.

-            M.P. and Allen, H. (1992) The use of technical analysis in the foreign exchange market. Journal of international Money and Finance, 11(3), pp.304-314.

-      Mahdipur, A. (2016). Provide a new trading strategy using candlestick patterns in Sweet Crude Oil Options contract. Master's Thesis. Islamic Azad University of Central Tehran Branch (In Persian).

-      Malkiel, B.G. and Fama, E.F., (1970) Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), pp.383-417.

-      Mohammadi, SH. (2005). Technical analysis in Tehran Security Exchange (TSE). Journal of Financial Research 6(17). (In Persian).

-      Papadamou, S. and Stephanides, G. (2007) Improving technical trading systems by using a new MATLAB-based genetic algorithm procedure.Mathematical and Computer Modelling, 46(1), pp.189-197.

-      Papailias, F. and Thomakos, D.D., 2015. An improved moving average technical trading rule. Physica A: Statistical Mechanics and its Applications, 428, pp.458-469.

-      Potvin, J.Y., Soriano, P. and Vallée, M. (2004) Generating trading rules on the stock markets with genetic programming. Computers & Operations Research, 31(7), pp.1033-1047.

-      Radeerom, M. (2014) April. Building a Trade System by Genetic Algorithm and Technical Analysis for Thai Stock Index. In Asian Conference on Intelligent Information and Database Systems (pp. 414-423). Springer International Publishing.

-      Silva, A., Neves, R. and Horta, N. (2015) A hybrid approach to portfolio composition based on fundamental and technical indicators. Expert Systems with Applications, 42(4), pp.2036-2048.

-      Sobreiro, V.A., da Costa, T.R.C.C., Nazário, R.T.F., e Silva, J.L., Moreira, E.A., Lima Filho, M.C., Kimura, H. and Zambrano, J.C.A., 2016. The profitability of moving average trading rules in BRICS and emerging stock markets. The North American Journal of Economics and Finance, 38, pp.86-101.

-      Taylor, Sobreiro, V. A., da Costa, T. R. C. C., Nazário, R. T. F., e Silva, J. L., Moreira, E. A., Lima Filho, M. C., ... & Zambrano, J. C. A. (2016). The profitability of moving average trading rules in BRICS and emerging stock markets. The North American Journal of Economics and Finance, 38, 86-101.

-      Wang, L., An, H., Liu, X. and Huang, X., 2016. Selecting dynamic moving average trading rules in the crude oil futures market using a genetic approach. Applied energy, 162, pp.1608-1618.