Intraday Liquidity and Return Dependency Structure Modeling of a Portfolio in Tehran Stock Exchange with ACP-GARCH-High Dimension Vine Copula

Document Type : Research Paper

Authors

1 Ph.D. candidate of Finance at Tehran University

2 Professor of Finance at Tehran University

3 Associate Professor of Finance, University of Tehran

Abstract

Modeling the joint distribution of liquidity and return to determine the dependency structure of a 15-stock portfolio using intraday data in 2019 provides a suitable model for the commonalities. Based on the complexities of higher dimensions multivariate modeling (combined distribution of liquidity and return), after univariate modeling of the stocks’ liquidity based on Autoregressive Conditional Poisson model (ACP) and the returns with the Generalized Autoregressive Conditional Heteroscedastic (GARCH), the marginal distributions were incorporated into a Copula Vine to model the dependency. The findings of this study, based on high-dimensional high-frequency data, indicate that there is an extreme nonlinear correlation between the liquidity of stocks and also between liquidity and returns across the portfolio, which is necessary to take into account in risk assessments to prevent inaccurate assessment of risk indicators such as value at risk. In addition, the results have shown that modeling the joint distribution of liquidity and stock returns in high dimensions relying on the Copula Vine model due to the flexibility performs well.

Keywords


 
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327.
Cattivelli, L. & Pirino, D. (2019). A SHARP model of bid–ask spread forecasts. International Journal of Forecasting, 35(4), 1211-1225.
Chordia, T., Roll, R. & Subrahmanyam, A. (2000). Commonality in liquidity. Journal of Financial Economics, 56(1), 3–28.
Daul, S., De Giorgi, E. G., ‌Lindskog, F. & McNeil, A. (2003). The Grouped t-Copula with an application to credit risk. http://dx.doi.org/10.2139/ssrn.1358956
Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica, 50, 987–1008.
Embrechts, P., Lindskog, F. & McNeil, A. J. (2001). Modelling dependence with Copulas and applications to risk management. Department of Mathematics, Z¨urich. www.math.ethz.ch/finance.
Giot, P. (2005). Market risk models for intraday data. The European Journal of Finance, 11(4), 309-324.
Gong, Y., Chen, Q. & Liang, J. (2018). A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets. Economic Modelling, 68(C), 586-598.
Groß‐KlußMann, A. & Hautsch, N. (2013). When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions. Journal of Empirical Finance, 18(2), 321-340.
Hasbrouck, J. & Seppi, D. J. (2001). Common factors in prices, order flows and liquidity. Journal of Financial Economics, 59 (3), 383-411.
Heinen, A. (2003). Modelling time series count data: an autoregressive conditional Poisson model. MPRA_paper_8113.pdf.
Huberman, G. & Halka, D. (2001). Systematic liquidity. Journal of Financial Research, 24(2), 161–178.
Joe, H. (1997). Multivariate models and multivariate dependence concepts. Chapman and Hall/CRC Press, 1st Edition.
Karolyi, G. A., Lee, K. H. & Van Dijk, M. A. (2012). Understanding commonality in liquidity around the world. Journal of Financial Economics, 105(1), 82-112.
Krupskii, P. & Joe, H. (2020). Flexible copula models with dynamic dependence and application to financial data. Econometrics and Statistics, 16, 148-167.
Malceniece, L., Malcenieks, K. & Putniņš, T. J. (2019). High frequency trading and comovement in financial markets. Journal of Financial Economics, 134(2), 381-399.
Moshirian, F., Qian, X., Wee, C. K. G. & Zhang, B. (2017). The determinants and pricing of liquidity commonality around the world. Journal of Financial Markets, 33(C), 22-41.
Palaro, H. P. & Hotta, L. K. (2006). Using conditional copula to estimate value at risk. Journal of Data Science, 4(1), 93-115.
Schmid, F. & Schmidt, R. (2007). Multivariate conditional versions of Spearman's rho and related measures of tail dependence. Journal of Multivariate Analysis, 98(6), 1123-1140.
Sklar, M. (1959). Fonctions de repartition a dimensions et leurs marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229-231.
Weiß, G. N. & Supper, H. (2013). Forecasting liquidity-adjusted intraday value-at-risk with vine copulas. Journal of Banking & Finance, 37(9), 3334-3350.
Xu. C, & Chen. H. (2012). Measuring portfolio value at risk. Lund University-Department of Economics. 1-55.
Zeger, S. L. (1988). A regression model for time series of counts. Biometrika 75(4), 621–629.