Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327.
Cattivelli, L. & Pirino, D. (2019). A SHARP model of bid–ask spread forecasts. International Journal of Forecasting, 35(4), 1211-1225.
Chordia, T., Roll, R. & Subrahmanyam, A. (2000). Commonality in liquidity. Journal of Financial Economics, 56(1), 3–28.
Daul, S., De Giorgi, E. G., Lindskog, F. & McNeil, A. (2003). The Grouped t-Copula with an application to credit risk. http://dx.doi.org/10.2139/ssrn.1358956
Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation, Econometrica, 50, 987–1008.
Embrechts, P., Lindskog, F. & McNeil, A. J. (2001). Modelling dependence with Copulas and applications to risk management. Department of Mathematics, Z¨urich. www.math.ethz.ch/finance.
Giot, P. (2005). Market risk models for intraday data. The European Journal of Finance, 11(4), 309-324.
Gong, Y., Chen, Q. & Liang, J. (2018). A mixed data sampling copula model for the return-liquidity dependence in stock index futures markets. Economic Modelling, 68(C), 586-598.
Groß‐KlußMann, A. & Hautsch, N. (2013). When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions. Journal of Empirical Finance, 18(2), 321-340.
Hasbrouck, J. & Seppi, D. J. (2001). Common factors in prices, order flows and liquidity. Journal of Financial Economics, 59 (3), 383-411.
Heinen, A. (2003). Modelling time series count data: an autoregressive conditional Poisson model. MPRA_paper_8113.pdf.
Huberman, G. & Halka, D. (2001). Systematic liquidity. Journal of Financial Research, 24(2), 161–178.
Joe, H. (1997). Multivariate models and multivariate dependence concepts. Chapman and Hall/CRC Press, 1st Edition.
Karolyi, G. A., Lee, K. H. & Van Dijk, M. A. (2012). Understanding commonality in liquidity around the world. Journal of Financial Economics, 105(1), 82-112.
Krupskii, P. & Joe, H. (2020). Flexible copula models with dynamic dependence and application to financial data. Econometrics and Statistics, 16, 148-167.
Malceniece, L., Malcenieks, K. & Putniņš, T. J. (2019). High frequency trading and comovement in financial markets. Journal of Financial Economics, 134(2), 381-399.
Moshirian, F., Qian, X., Wee, C. K. G. & Zhang, B. (2017). The determinants and pricing of liquidity commonality around the world. Journal of Financial Markets, 33(C), 22-41.
Palaro, H. P. & Hotta, L. K. (2006). Using conditional copula to estimate value at risk. Journal of Data Science, 4(1), 93-115.
Schmid, F. & Schmidt, R. (2007). Multivariate conditional versions of Spearman's rho and related measures of tail dependence. Journal of Multivariate Analysis, 98(6), 1123-1140.
Sklar, M. (1959). Fonctions de repartition a dimensions et leurs marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229-231.
Weiß, G. N. & Supper, H. (2013). Forecasting liquidity-adjusted intraday value-at-risk with vine copulas. Journal of Banking & Finance, 37(9), 3334-3350.
Xu. C, & Chen. H. (2012). Measuring portfolio value at risk. Lund University-Department of Economics. 1-55.
Zeger, S. L. (1988). A regression model for time series of counts. Biometrika 75(4), 621–629.