شبیه‌سازی تعاملات متغیرهای زبانی در فرآیند توسعه بازار سرمایه با بهره‌گیری از سیستم استنتاج فازی و رویکرد پویایی‌شناسی سیستم

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه مدیریت، دانشکده مدیریت، دانشگاه شیراز، شیراز، ایران

چکیده

در بهره‌گیری از رویکرد پویایی‌شناسی سیستم به‌منظور الگوسازی پدیده‌های اجتماعی و اقتصادی، به دلیل تأثیر عمیق عامل انسانی و تصمیم‌گیری وی در این قبیل پدیده‌ها، قطعیت موجود در نگاه کلاسیک و مدرن کم‌رنگ شده و نیاز به نگاهی منعطف‌تر نسبت به این پدیده‌ها ضروری می‌نماید. هدف از پژوهش حاضر، شبیه‌سازی تعاملات متغیرهای زبانی مؤثر بر ارزش بازار سرمایه با استفاده از رویکرد پویایی‌شناسی سیستم هست. در این راستا، به‌منظور منعکس نمودن شیوه تفکر ذهنی سرمایه‌گذاران، از سیستم استنتاج فازی در رویکرد پویایی‌شناسی سیستم استفاده‌شده است. الگوی پیشنهادی پژوهش با نرم‌افزار Vensim DSS شبیه‌سازی و اعتبار آن با استفاده از آزمون‌های آماری و دستگاهی موردسنجش قرارگرفته است. نتایج شبیه‌سازی سناریوها نشان می‌دهد که تغییرات هم‌زمان متغیرهای درون‌زای بازار سرمایه نسبت به تغییرات منفرد هر یک از متغیرها، با تأخیر زمانی کمتر و به مقدار به‌مراتب بیشتری بر متغیر ارزش بازار سرمایه اثرگذار است. تأثیر تغییرات مطلوبِ متغیرهای کارایی بازار سرمایه، دانش و فرهنگ سرمایه‌گذاری و مداخلات بازار سرمایه، باعث افزایش 77 درصدی ارزش بازار سرمایه در افق 1404 نسبت به شبیه‌سازی پایه می‌شود. همچنین نتایج شبیه‌سازی تحلیل حساسیت نشان می‌دهد که ارزش بازار سرمایه نسبت به تغییرات منفرد متغیرهای زبانی در مقایسه با تغییرات هم‌زمان آن‌ها، حساسیت کمتری از خود نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulating the Linguistic Variables Interactions in Capital Market Development Process Using Fuzzy Inference System in a System Dynamic Context

نویسندگان [English]

  • Ali Mohammadi
  • Alinaghi Mosleh Shirazi
  • Abbas Abbasi
  • Saeed Akhlaghpour
Department of management, Management faculty, Shiraz university, Shiraz, Iran
چکیده [English]

This research aims at simulating the interactions of linguistic variables affecting market capitalization of capital market. In this regard, the dynamic model of the research has been designed by using a system dynamics approach and, in order to reflect investor’s mentality, the fuzzy inference system has been merged with system dynamics methodology. In this framework, the fuzzy membership functions of variables such as Market Efficiency, Market Manipulation, Investor’s Knowledge and Culture, Market Trust, and Investor’s Sentiment has been defined and Using Vensim DSS to simulate the scenarios, the validity of the model has been tested under systemic and statistical tests. This research is an applied study with an exploratory mixed method framework in line with 1404 Vision. The results show that Simultaneous change in endogenous variables, results in faster and greater change in market capitalization than distinct change in each of this variables. Changing the Market Efficiency, Investor’s Knowledge and Culture, and Market Manipulation in the demanded way will increase the market capitalization by 77% in the comparison with base run simulation values. The results of sensitivity analysis shows that market capitalization is more sensitive to simultaneous change of endogenous variables than the distinct changes of each of these variables.

کلیدواژه‌ها [English]

  • Fuzzy inference system
  • System dynamics
  • Linguistic variables
  • Capital market
 

-      آذر، عادل. فرجی، حجت. (1387). علم مدیریت فازی. تهران، ایران: مهربان نشر.

-      ابراهیمی‌نژاد، مهدی. عباسی، عباس. خلیفه، مجتبی. (1388). بررسی روش‌های افزایش شفافیت اطلاعاتی بازار سرمایه ایران و انتخاب روشی بهینه با استفاده از فرایند تحلیل سلسله مراتبی. مجله پیشرفت‌های حسابداری دانشگاه شیراز، 1(1). صص. 1-27.

-      اله یاری، اکبر. (1387). بررسی شکل ضعیف کارایی بازار سرمایه در بورس اوراق بهادار تهران. فصلنامه بورس اوراق بهادار. 1(4). صص. 75-108.

-      امینی، امراله. امامی، مصطفی. امامی، علیرضا. (1391). تأثیر شفافیت بر کارایی بازار سرمایه با تأکید بر حاکمیت شرکتی. نشریهحسابرس، 5. صص. 99-100.

-      باقری، عباس. و قربانی، مجید. (1389). دست‌کاری بازار اوراق بهادار. فصلنامه پژوهش حقوق عمومی. 12(29). صص. 301-326.

-    سلیمی فر، مصطفی. شیرزور، زهرا. (1389). بررسی کارایی اطلاعاتی بازار بورس به روش آزمون نسبت واریانس. دانش و توسعه، 31(5). صص. 30-60.

-      عباسی، عباس، (1384). تحلیل سیستمی راهکارها و موانع افزایش شفافیت در بازار سرمایه ایران. ﺳﻮﻣﯿﻦ ﮐﻨﻔﺮﺍﻧﺲ ملی توسعه حقوق سرمایه‌گذاران. ایران: شیراز.

-      قالیباف اصل، حسن. و ناطقی، محبوبه. (1387). بررسی کارایی در سطح ضعیف در بورس اوراق بهادار تهران (بررسی زیر بخش‌های بازار). تحقیقات مالی. 1(9)، صص. 80-100.

-      مشایخی، علینقی. آذر، عادل. و زنگویی‌نژاد، ابوذر. (1393) ارائه مدل دینامیکی برای کاهش متوسط زمان پرداخت خسارت در شرکت‌های بیمه. تهران، فصلنامه پژوهشنامه بازرگانی. 18(71). صص. 95-117.

-      Abbasi, A. (2005). Systemic analysis of  obstacles and solutions of increasing market transparency in Iran capital market.Third Conference on developing the investor’s rights. Iran:Shiraz. [in Persian]

-      Alahyari, A. (2008). Investigating the weak form of Tehran stock exchange’s efficiency. Journal of securities exchange organization. 1(4). pp.75-108. [in Persian]

-      Amini, A. et al. (2012). The effect of transparency on capital market efficiency: the corporate governance view. Journal of  Auditing. 5.  pp.99-100. [in Persian]

-      Azar, a. and Fraji, H. (2008). Fuzzzy management science. Tehran.Iran: Mehrban publication institution. [in Persian]

-      Bagheri, A. and Ghorbani, M. (2010). Stock market manipulation. Journal of  law researchs. 12(29). pp.301-326. [in Persian]

-      Bojadziev, George. Bojadziev, Maria. (2007). Fuzzy logic for business, finance, and management. 2nd ed. Hackensack, NJ: World Scientific, c2007.

-      Ebrahiminezhad, M. et al (2009). Investigating the methods of increasing Iran stock market transparency using AHP method. Journal of accounting advances.1(1). pp.1-27. [in Persian]

-      Ghalibaf, H. and Nateghi, M. (2008). Invetigating the weak form efficiency of Tehran stock exchange: The sub-segments of market. Financial resarch journal. 9(1). pp.80-100. [in Persian]

-      Herrera, Milton. et al. (2014). Using System Dynamics and Fuzzy Logic to Assess the Implementation RFID Technology. Proceedings of the 32st International Conference of System Dynamics Society. Delft, Netherlands.

-      Liu, Shiyong .et al. (2010). Representing Qualitative Variables and Their Interactions With Fuzzy Logic in System Dynamics Modeling. Systems Research and Behavioral Science, USA, Published online inWiley Online Library

-      Mashayekhi. A. et al. (2014). A dynamic modelling for decreasing loss time average in insurance companies. Iranian journal of trade studies. 18(71). pp.95-117. [in Persian]

-      Masry, Mohamed. (2015).Measuring Transparency and Disclosure in the Egyptian Stock Market. Journal of Finance and Bank Management. 3(1), pp.25-36.

-      Maxim, M. and Ashif, A. (2017). A new method of measuring stock market manipulation through structural equation modeling (SEM). Investment Management and Financial Innovations. 14(3), pp.54-61

-      Noori, Maryam. and Anvar Khatibi, Saeed. (2013). The impact of liquidity and transparency in the financial markets: A case study in Tehran stock exchange. European Online Journal of Natural and Social Sciences. 2(3), pp.109-115.

-      Ross, T.J. (2007). Fuzzy logic with engineering application. London, UK: John Wiley & Sons.

-      Salimifar, M. and Shirzoor, Z. (2010). Investigate the information efficiency of stock market using Variance Ratio Test. Kwnoledge and development. 31(5). pp.30-60. [in Persian]

-      Shu-Fan, Hsieh. et al (2012). Market Transparency, Investor Strategies, and Trading Costs:Evidence from the Taiwan Stock Exchange. Accounting and Finance Research. 1(1), pp.180-191.

-      Sterman, J. (2000). Business dynamics: systems thinking and modeling for a complex world. Boston, USA: McGraw-Hill.

-      Usenik, J. (2012). A fuzzy model of power supply system control. Journal of energy technology, 5(3). pp.23-37

-      Usneik, J., & Turnsek, T. (2013). Modeling conflict dynamics with fuzzy logic inference. Journal of US-China public administration, pp.457-474

-      Vlad, Andreea. (2014).Financial Market Manipulation: How to identify the Mechanisms?. International Journal of Economic Practices and Theories, 4(1). pp.77-88.

-      Yosefi, H., Nahaei, V. & Nematian, J. (2011). A new method for modeling system dynamics by fuzzy logic: modeling of research and development in the national system of innovation. The journal of mathematics and computer science. 2(1). pp.88-89