- منابع
- Aouadi, A., Arouri, M., & Teulon, F. (2013). Investor attention and stock market activity: Evidence from France. Economic Modelling, 35, 674-681.
- Ang, A., & Bekaert, G. (2006). Stock return predictability: Is it there?. The Review of Financial Studies, 20(3), 651-707.
- Askitas, N., & Zimmermann, K. F. (2009). Google econometrics and unemployment forecasting.
- Banerjee, S.; Gatchev, V. A. & Spindt, P. A. (2007). "Stock market liquidity and firm dividend policy". Journal of Financial and Quantitative Analysis. 42(02). Pp. 369-397.
- Banerjee, P. S., Doran, J. S., & Peterson, D. R. (2007). Implied volatility and future portfolio returns. Journal of Banking & Finance, 31(10), 3183-3199.
- Bangwayo-Skeete, P. F., &Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454-464.
- Bank, M., Larch, M., & Peter, G. (2011). Google search volume and its influence on liquidity and returns of German stocks. Financial markets and portfolio management, 25(3), 239.
- Beer, F.; Herve, F.; Zouaoui M. (2013) Google Investor Sentiment and the Stock Market, Economic Bulletin, Vol.33 no.1 pp. 454-466.
- Bijl, L., Kringhaug, G., Molnár, P., &Sandvik, E. (2016). Google searches and stock returns. International Review of Financial Analysis, 45, 150-156.
- Bilgiç, M. E. (2017). Google Trends Search volume index in estimation of İstanbul Stock Market Index (BIST) (Doctoral dissertation, İstanbul BilgiÜniversitesi).
- Bollerslev, T., Tauchen, G., & Zhou, H. (2009). Expected stock returns and variance risk premia. The Review of Financial Studies, 22(11), 4463-4492.
- Campbell, J. Y., & Thompson, S. B. (2007). Predicting excess stock returns out of sample: Can anything beat the historical average?. The Review of Financial Studies, 21(4), 1509-1531.
- Campbell, J. Y., & Yogo, M. (2006). Efficient tests of stock return predictability. Journal of financial economics, 81(1), 27-60.
- Challet, D., & Ayed, A. B. H. (2013). Predicting financial markets with Google Trends and not so random keywords. arXiv preprint arXiv:1307.4643.
- Cochrane, J. H. (2007). The dog that did not bark: A defense of return predictability. The Review of Financial Studies, 21(4), 1533-1575.
- Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2-9.
- Chowdhury, S.G.; Routh, S.; Chakrabarti, S. (2014), News Analytics and Sentiment Analysis to Predict Stock Price Trends, Int. J. Comput. Sci. Inform. Technol 5.3 (2014): 3595-3604.
- Da, Z., Engelberg, J., & Gao, P. (2014). The sum of all FEARS investor sentiment and asset prices. The Review of Financial Studies, 28(1), 1-32.
- Dimpfl, T., & Kleiman, V. (2019). Investor pessimism and the German stock market: Exploring Google search queries. German Economic Review, 20(1), 1-28.
- Engelberg, J. O. S. E. P. H., &Gao, P. (2011). In search of attention. The Journal of Finance, 66(5), 1461-1499.
- Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38, 34-105.
- Foucault, T., D. Sraerand D. J. Thesmar (2011), ‘Individual Investors and Volatility’, Journalof Finance 66, 1369–1406.
- Fink, C., & Johann, T. (2014). May I have your attention, please: The market microstructure of investor attention. Please: The Market Microstructure of Investor Attention (September 17, 2014).
- Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatilities from historical data. Journal of business, 67-78.
- Goddard, J., Kita, A., & Wang, Q. (2015). Investor attention and FX market volatility. Journal of International Financial Markets, Institutions and Money, 38, 79-96.
- Gündüz, H.; Çataltepe, Z. (2015) “Borsa Istanbul (BIST) daily estimation using financial news and balanced feature selection.” Expert Syst. Appl. 42 (2015): 9001-9011.
- Harford, T. (2017). Just google it: The student project that changed the world. Accesible online http://www. bbc. com/news/business-39129619.
- Joshi, K.; Bharati, H. N.; Jyothi, R. (2015), Stock Trend Estimation Using News Sentiment Analysis, arXiv:1607.01958 [cs.CL].
- Kim, N., Lučivjanská, K., Molnár, P., & Villa, R. (2019). Google searches and stock market activity: Evidence from Norway. Finance Research Letters, 28, 208-220.
- Kringhaug, G., Bijl, L. R., & Sandvik, E. (2015). Predictive Power of Google Search Volume on StockReturns (Master's thesis, NTNU).
- Latoeiro, P., Ramos, S. B., & Veiga, H. (2013). Predictability of stock market activity using Google search queries.
- Li, X., Shang, W., Wang, S., & Ma, J. (2015). A MIDAS modelling framework for Chinese inflation index forecast incorporating Google search data. Electronic Commerce Research and Applications, 14(2), 112-125.
- Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of economic perspectives, 17(1), 59-82.
- Mao, H.; Counts, S.; Bollen, J. (2011), Predicting Financial Markets: Comparing Survey, News, Twitter and Search Engine Data, arXiv preprint p.10.
- Mondria, J., Wu, T., & Zhang, Y. (2010). The determinants of international investment and attention allocation: Using internet search query data. Journal of International Economics, 82(1), 85-95.
- Narayan, P. K., & Narayan, S. (2014). Psychological oil price barrier and firm returns. Journal of Behavioral Finance, 15(4), 318-333.
- Narayan, P. K., Phan, D. H. B., Narayan, S., &Bannigidadmath, D. (2017). Is there a financial news risk premium in Islamic stocks?.Pacific-Basin Finance Journal, 42, 158-170.
- Oliveira, N., Cortez, P., & Areal, N. (2017). The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices. Expert Systems with Applications, 73, 125-144.
- Pierre, J. S., Klimkiewicz, M., Resom, A., &Kalampalikis, N. (2019). Trading the stock market using Google search volumes: a long short-term memory approach. International Journal of Financial Engineering and Risk Management, 3(1), 3-18.
- Porta, R. L., Lakonishok, J., Shleifer, A., & Vishny, R. (1997). Good news for value stocks: Further evidence on market efficiency. The Journal of Finance, 52(2), 859-874.
- Preis, T.; Maat, H. S.; Stanley, H. E. (2013), Quantifying Trading Behavior in Financial Markets Using Google Trends, Scientific Reports 3, Article number: 1684, doi:10.1038/srep01684.
- Preis, T., Reith, D., & Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1933), 5707-5719.
- Rouse, M. (2014). Internet of Things (IOT),[ONLINE] Available: http://whatis. techtarget. com/definition. Internet-of-Things [Acedido em 23 Junho 2015].
- Takeda, F., & Wakao, T. (2014). Google search intensity and its relationship with returns and trading volume of Japanese stocks. Pacific-Basin Finance Journal, 27, 1-18.
- Vlastakis, N., & Markellos, R. N. (2012). Information demand and stock market volatility. Journal of Banking & Finance, 36(6), 1808-1821.
- Vosen, S., & Schmidt, T. (2011). Forecasting private consumption: survey‐based indicators vs. Google trends. Journal of Forecasting, 30(6), 565-578.
- Welch, I., & Goyal, A. (2007). A comprehensive look at the empirical performance of equity premium prediction. The Review of Financial Studies, 21(4), 1455-1508.
- Xu, Q., Bo, Z., Jiang, C., & Liu, Y. (2019). Does Google search index really help predicting stock market volatility? Evidence from a modified mixed data sampling model on volatility. Knowledge-Based Systems, 166, 170-185.