ارایه مدل پیش‌بینی تجزیه سیگنال‌های بازار سرمایه با استفاده از رویکرد (CEEMD- DL(LSTM))

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجو دکتری مهندسی مالی،گروه مدیریت مالی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه حسابداری،واحد اسلامشهر، دانشگاه آزاد اسلامی،تهران،ایران و استاد مدعو دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار، گروه مدیریت، دانشکده علوم اجتماعی و اقتصاد، دانشگاه الزهرا، تهران، ایران و استاد مدعو دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات دانشگاه آزاد اسلامی، تهران، ایران

4 دانشیار، گروه حسابداری، واحد تهران مرکز، دانشگاه آزاد اسلامی،تهران،ایران

10.22051/jfm.2024.41203.2716

چکیده

ویژگی غیرخطی و نوسانات بالا در سری­‌های زمانی مالی، پیش­بینی قیمت سهام و شاخص­‌های مالی را با چالش­‌های زیادی مواجه ساخته­است. با این حال توسعه­‌های اخیر در مدل­‌های یادگیری عمیق (DL) با ساختار‌هایی مانند حافظه طولانی کوتاه مدت (LSTM)  و شبکه عصبی کانولوشنی (CNN) پیشرفت­‌هایی در تحلیل این نوع از داده­ها ایجاد کرده است. یکی دیگر از رویکرد‌هایی که می­تواند در تحلیل سری­‌های زمانی مالی کارا باشد تجزیه سیگنال­‌های بازار سرمایه از طریق الگوریتم­‌هایی مانند تجزیه مد تجربی یکپارچه کامل (CEEMD) می­باشد. با توجه به اهمیت مقوله پیش­بینی در بازار‌های مالی، در این پژوهش با ترکیب مدل­‌های یادگیری عمیق و روش تجزیه مد تجربی یکپارچه کامل (CEEMDمدل هیبریدی  CEEMD- DL(LSTM)به منظور پیش­بینی شاخص­ بورس اوراق بهادار تهران مورد استفاده قرار گرفته­است. در این راستا از داده­‌های روزانه شاخص کل بورس اوراق بهادار تهران در دوره زمانی 01/12/1390  - 01/12/1400  استفاده شده­است. نتایج بدست آمده با نتایج مدل­‌های رقیب بر اساس معیار‌های سنجش کارایی مقایسه شد. بر اساس نتایج بدست آمده، مدل معرفی شده (CEEMD- DL(LSTM))، در مقایسه با مدل­‌های سنتی در این حوزه، از کارایی و دقت پیش­بینی بالاتری برخوردار است. بر همین اساس کاربرد این مدل در پیش­بینی­‌های مالی پیشنهاد می­گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting the Forecasting Model of Analysis of Capital market Signals Using (CEEMD-DL(LSTM)) approach

نویسندگان [English]

  • Sakineh Sayyadi nezhad 1
  • Ali Esmaeilzadeh makhari 2
  • Mohammadreza Rostami 3
  • َAhmad Yaghobnejad 4
1 PhD student in financial engineering, Department of Financial Management, Faculty of Management and Economics, Science and Research Unit, Islamic Azad University, Tehran, Iran
2 Associate Professor, Department of Accounting, Islamshahr Branch, Islamic Azad University, Tehran, Iran and Visiting Professor, Faculty of Management and Economics, Science and Research Unit, Islamic Azad University, Tehran, Iran
3 Associate Professor, Department of Management, Faculty of Social Sciences and Economics, AlZahra University, Tehran, Iran and Visiting Professor, Faculty of Management and Economics, Science and Research Unit, Islamic Azad University, Tehran, Iran
4 Associate Professor, Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Non-linearity feature and high fluctuations in financial time series have made the forecasting of stock prices and financial indicators face many challenges. However, recent developments in deep learning (DL) models with structures such as long-short-term memory (LSTM) and convolutional neural network (CNN) have made improvements in the analysis of this type of data. Another approach that can be effective in the analysis of financial time series is the decomposition of capital market signals through algorithms such as complete integrated empirical mode decomposition (CEEMD). Considering the importance of forecasting in the financial markets, in this research, by combining deep learning models and complete integrated empirical mode decomposition (CEEMD), The hybrid CEEMD-DL(LSTM) model has been used to forecast the Tehran Stock Exchange index. In this regard, the daily data of the total index of the Tehran Stock Exchange in the period of 2012/12/01 – 2022/02/20 be used and the results were compared with the results of competing models based on efficiency measurement criteria. Based on the obtained results, the introduced model (CEEMD-DL(LSTM)) has higher efficiency and accuracy in stock exchange index forecasting. Accordingly, the use of this model in financial forecasts is suggested.

کلیدواژه‌ها [English]

  • Deep learning models (DL)
  • Complete integrated empirical mode decomposition (CEEMD)
  • Tehran Stock Exchange index
  • Long-short-term memory (LSTM)
  • Convolutional neural network (CNN)
  1.  

     

    Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning- new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 5(4), 13–18.

    Babajani, J., Taghva, M., Blue, G., Abdollahi, M. (2019). Forecasting Stock Prices in Tehran Stock Exchange Using Recurrent Neural Network Optimized by Artificial Bee Colony Algorithm. Financial Management Strategy, 7(2), 195-228. (in Persian)

    Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. P., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational Intelligence and Financial Markets: A Survey and Future Directions. Expert Systems with Applications, 55, 194–211.

    Chong, E. and Han, C. and Park, F.C. (2017) Deep learning networks for stock market analysis and prediction: methodology, data representations, and case studies. Expert systems with applications., 83, 187-205.

    Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654–669.

    kaviani, M., Fakhrehosseini, S., dastyar, F. (2020). An Overview of the Importance and Why the Stock Return Prediction, with Emphasis on Macroeconomic Variables. Journal of Accounting and Social Interests, 10(2), 113-131. (in Persian)

    Langkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42, 11–24.  

    Lin, Y., Yan, Y., Xu, J., Liao, Y., & Ma, F. (2021). Forecasting stock index price using the CEEMDAN-LSTM model. The North American Journal of Economics and Finance57, 101421.

    Samadi, S., Bayani, ozra. (2009). Relation Between Macroeconomic Variables and General Index in Tehran Stock Exchange. Economical Modeling, 2(6), 111-130. (in Persian)

    Sarafraz, S., Sefati, F. and Ghiasvand, A. (2016). Predicting stock prices with hybrid market indices using a fuzzy neural model. International Conference on Modern Research in Management, Economics and Accounting. (in Persian)

    Tipirisetty, Abhinav, "Stock Price Prediction using Deep Learning" (2018). Master's Projects. 636.

    1. Long, Z. Lu and L. Cui, (2018). Deep learning-based feature engineering for stock price movement prediction, Knowledge-Based Systems, 164, 163-173.

    Yan, B., & Aasma, M. (2020). A novel deep learning framework: Prediction and analysis of financial time series using CEEMD and LSTM. Expert systems with applications159, 113609.

    1. Liu, (2019). Novel Volatility Forecasting Using Deep Learning – Long Short-Term Memory Recurrent Neural Networks, Expert Systems with Applications,132, 99-109.

    Zarei, G., Mohamadiyan, R., Nayeri Hazeri, H., Mashokouh ajirlou, M. (2018). The Comparison of Fuzzy Neural Network Methods with Wavelet Fuzzy Neural Network in Predicting Stock Prices of Banks Accepted in Tehran Stock Exchange. Financial Management Strategy, 6(3), 109-138. (in Persian