- پور احمدی، زهرا و نجفی، امیرعباس، (1394). "بهینهسازی پویای سبد سرمایهگذاری با توجه به هزینه معاملات"، مهندسی مالی و مدیریت اوراق بهادار، (22)6، صص. 127-146.
- کاظمی میان گسکری، مینا؛ یاکیده، کیخسرو و قلی زاده، محمدحسن، (1396). "بهینه یابی سبد سهام (کاربرد مدل ارزش درمعرض ریسک بر روی کارایی متقاطع)". راهبرد مدیریت مالی, (5)2, صص.159-183. . doi: 10.22051/jfm.2017.12040.1155
- همائیفر، ساغر و روغنیان، عماد، (1395). "به کارگیری الگوهای بهینهسازی پایدار و برنامهریزی آرمانی در مسئله انتخاب سبد سرمایهگذاری چند دورهای"، مهندسی مالی و مدیریت اوراق بهادار، (28)7، صص.153-167.
- Andersson, F., Mausser, H., Rosen, D., & Uryasev, S. (2001). “Credit risk optimization with conditional value-at-risk criterion”. Mathematical Programming, 89(2), pp.273-291.
- Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). “Coherent measures of risk”. Mathematical finance, 9(3), pp.203-228.
- Campbell, R., Huisman, R., & Koedijk, K. (2001). “Optimal portfolio selection in a Value-at-Risk framework”. Journal of Banking & Finance, 25(9), pp.1789-1804.
- Chen, Z. (2005). “Multiperiod consumption and portfolio decisions under the multivariate GARCH model with transaction costs and CVaR-based risk control”. OR Spectrum, 27(4), pp.603-632.
- Chen, Z., & Song, Z. (2012). “Dynamic portfolio optimization under multi-factor model in stochastic markets”. OR spectrum, 34(4), pp.885-919.
- Chunhachinda, P., Dandapani, K., Hamid, S., & Prakash, A. J. (1997). “Portfolio selection and skewness: Evidence from international stock markets”. Journal of Banking & Finance, 21(2), pp.143-167.
- Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). “Evolutionary algorithms for solving multi-objective problems” (Vol. 5). New York: Springer.
- Cong, F., & Oosterlee, C. W. (2016). “Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation”. Journal of Economic Dynamics and Control, 64, pp.23-38.
- Consigli, G. (2002). “Tail estimation and mean–VaR portfolio selection in markets subject to financial instability”. Journal of Banking & Finance, 26(7), pp.1355-1382.
- DeMiguel, V., Mei, X., & Nogales, F. J. (2016). “Multiperiod Portfolio Optimization with Multiple Risky Assets and General Transaction Costs”. Journal of Banking & Finance.
- DeMiguel, V., Mei, X., & Nogales, F. J. (2016). “Multiperiod portfolio optimization with multiple risky assets and general transaction costs”. Journal of Banking & Finance, 69, pp.108-120.
- Deng, X., & Li, R.(2012). “A portfolio selection model with borrowing constraint based on possibility theory”. Applied Soft Computing, 12(2), pp.754-758.
- Dubois, D., & Prade, H. (2012). Possibility theory: an approach to computerized processing of uncertainty. “Springer Science & Business Media”.
- Feinstein, C. D., & Thapa, M. N. (1993). “A Reformulation of a Mean-absolute Deviation Portfolio Optimization Model”. Management Science, 39(12).
- Geyer, A., Hanke, M., & Weissensteiner, A. (2009). “A stochastic programming approach for multi-period portfolio optimization”. Computational Management Science, 6(2), pp.187-208.
- Grootveld, H., & Hallerbach, W. (1999). “Variance vs downside risk: Is there really that much difference?” European Journal of operational research, 114(2), pp.304-319.
- Guo, S., Yu, L., Li, X., & Kar, S. (2016). “Fuzzy multi-period portfolio selection with different investment horizons”. European Journal of Operational Research, 254(3), pp.1026-1035.
- Gupta, P., Mehlawat, M. K., Inuiguchi, M., & Chandra, S. (2014). “Fuzzy Portfolio Optimization”. Springer-Verlag, Berlin.
- Homaeifar, S., Roghanian, E. (2016). “The Application of Robust Optimization and Goal Programming in Multi Period Portfolio Selection Problem”.Financial Engineering and Portfolio Managemen, 7(28), pp.153-167. (In Persian)
- Huang, X. (2006). “Fuzzy chance-constrained portfolio selection. Applied mathematics and computation”, 177(2), pp.500-507.
- Huang, X. (2008). “Mean-variance model for fuzzy capital budgeting”. Computers & Industrial Engineering, 55(1), pp.34-47.
- Huang, X. (2008). “Risk curve and fuzzy portfolio selection”. Computers & Mathematics with Applications, 55(6), pp.1102-1112.
- Huang, X. (2008). “Mean-entropy models for fuzzy portfolio selection”. IEEE Transactions on Fuzzy Systems, 16(4), pp.1096-1101.
- Kazemi miyangaskari, M., Yakideh, K., Gholizadeh, M. (2017). “Portfolio optimization (the application of Value at Risk model on cross efficiency)”. Financial Management Strategy, 5(2), pp.159-183. (In Persian)
- Kapur, J. N. (1990). “Maximum Entropy Models in Science and Engineering”. Wiley Eastern Limited, New Delhi
- Konno, H., & Yamazaki, H. (1991). “Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market”. Management science, 37(5), pp.519-531.
- Li, D., & Ng, W. L. (2000). “Optimal dynamic portfolio selection: Multiperiod mean‐variance formulation”. Mathematical Finance, 10(3), pp.387-406.
- Li, X., Qin, Z., & Kar, S. (2010). “Mean-variance-skewness model for portfolio selection with fuzzy returns”. European Journal of Operational Research, 202(1), pp.239-247.
- Li, X., Zhang, Y., Wong, H. S., & Qin, Z. (2009). “A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns”. Journal of Computational and Applied Mathematics, 233(2), pp.264-278.
- Lin, C. C., & Liu, Y. T. (2008).”Genetic algorithms for portfolio selection problems with minimum transaction lots”. European Journal of Operational Research, 185(1), pp.393-404.
- Liu, B. D. (2004). “Uncertain theory: An introduction to its axiomatic foundation. Berlin”: Springer-Verlag.
- Liu, B., & Liu, Y. K. (2002). “Expected value of fuzzy variable and fuzzy expected value models”. Fuzzy Systems, IEEE Transactions on, 10(4), pp.445-450.
- Liu, Y. J., & Zhang, W. G. (2015). “A multi-period fuzzy portfolio optimization model with minimum transaction lots”. European Journal of Operational Research, 242(3), pp.933-941.
- Liu, Y. J., Zhang, W. G., & Xu, W. J. (2012). ‘Fuzzy multi-period portfolio selection optimization models using multiple criteria”. Automatica, 48(12), pp.3042-3053.
- Liu, Y. J., Zhang, W. G., & Zhang, Q. (2016). “Credibilistic multi-period portfolio optimization model with bankruptcy control and affine recourse”. Applied Soft Computing, 38, pp.890-906.
- Liu, Y.-J., Zhang, W.-G., & Zhang, P. (2013). “A multi-period portfolio selection optimization model by using interval analysis”. Economic Modelling, 33, pp.113-119.
- Liu, Y.-J., Zhang, W.-G., & Zhang, Q. (2016). “Credibilistic multi-period portfolio optimization model with bankruptcy control and affine recourse”. Applied Soft Computing, 38, pp.890-906.
- Markowitz, H., & Selection, P. (1959). “Efficient diversification of investments”. John Wiley and Sons, 12, pp.26-31.
- Mehlawat, M. K. (2016). “Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels”. Information Sciences, 345, pp.9-26.
- Mossin, J. (1968). “Optimal multiperiod portfolio policies”. The Journal of Business, 41(2), pp.215-229.
- Peng, J. (2011). “Credibilistic value and average value at risk in fuzzy risk analysis”. Fuzzy Information and Engineering, 3(1), pp.69-79.
- Philippatos, G. C., & Wilson, C. J. (1972). “Entropy, market risk, and the selection of efficient portfolios”. Applied Economics, 4(3), pp.209-220.
- Pourahmadi, Z., Najafi, A.A. (2015). “Dynamic Portfolio Optimization with Transaction Cost”. Financial Engineering and Portfolio Management, 6(24), pp.152-172. (In Persian)
- Rachev, S. T., Stoyanov, S. V., & Fabozzi, F. J. (2008). “Advanced stochastic models, risk assessment, and portfolio optimization: The ideal risk, uncertainty, and performance measures (Vol. 149). John Wiley & Sons.
- Rockafellar, R. T., & Uryasev, S. (2000). “Optimization of conditional value-at-risk”. Journal of risk, 2, pp.21-42.
- Rockafellar, R. T., Uryasev, S., & Zabarankin, M. (2006). “Generalized deviations in risk analysis”. Finance and Stochastics, 10(1), pp.51-74.
- Sadjadi, S. J., Seyedhosseini, S. M., & Hassanlou, K. (2011). “Fuzzy multi period portfolio selection with different rates for borrowing and lending”. Applied Soft Computing, 11(4), pp.3821-3826.
- Speranza, M. G. (1993). “Linear programming models for portfolio optimization”. Finance, 14, pp.107–123.
- Usta, I., & Kantar, Y. M. (2011). “Mean-variance-skewness-entropy measures: a multi-objective approach for portfolio selection”. Entropy, 13(1), pp.117-133.
- Vercher, E., & Bermúdez, J. D. (2015). “Portfolio optimization using a credibility mean-absolute semi-deviation model”. Expert Systems with Applications, 42(20), pp.7121-7131.
- Wei, S. Z., & Ye, Z. X. (2007). “Multi-period optimization portfolio with bankruptcy control in stochastic market”. Applied Mathematics and Computation, 186(1), pp.414-425.
- Yao, H., Li, Z., & Li, D. (2016). “Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability”. European Journal of Operational Research, 252(3), pp.837-851.
- Zhang, W. G., Liu, Y. J., & Xu, W. J. (2012). “A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs”. European Journal of Operational Research, 222(2), pp.341-349.
- Zhou, J., Li, X., & Pedrycz, W. (2016). “Mean-Semi-Entropy Models of Fuzzy Portfolio Selection”. IEEE Transactions on Fuzzy Systems, 24(6), pp.1627-1636.
- Zhou, R., Cai, R., & Tong, G. (2013). “Applications of entropy in finance: A review”. Entropy, 15(11), pp.4909-4931.
- Zhu, S. S., Li, D., & Wang, S. Y. (2004). “Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation”. IEEE transactions on Automatic Control, 49(3), pp.447-457.